D

Hardening Guide
Filestash

Contents
1 Introduction
2 Architectural Overview

3 Hardening of a typical Filestash setup

3.1 Component A: Browser

3.2 Component B: Transport from browser to Filestash

3.3 Component C: Filestash server,
3.3.1 Application security features
3.3.2 Authentication and authorisation
3.3.3 Audit logging and treat detection
3.3.4 Configuration management

3.4 Component D: Transport from Filestash to the storage com-
ponento Lo

A Appendix

=

—_

S O U W w N

1 Introduction

Filestash is a self-contained server software that runs on Linux with an amd64
or arm architecture. It can be made available as a docker container or a
static binary. This hardening guide will only cover the static build method
running in complete isolation as a self-contained standalone software without
any runtime dependency.

2 Architectural Overview

Filestash is made of a core around which are associated modules we refer to
s "plugins".

PLUGINS

Storage Backend

.
sftp | ftp 53 ebday minio | smb [nfs

Authentication

saml | oidc | ldap | ..

Authorisation

readonly| ...
FILESTASH CORE <:>

-

STARTER CONFIG STORE l LOG STORE W
hitp |hitp2 |hitps | ... m 53 [-,]
I
AUDIT ENDPOINTS SEARCH }
og | . \seo pages fts state\ess
I
VIEWER FILE TRANSFORM }

docx | xlsx [encrypl] video transcode] Img transcode

Plugins help change many aspects of Filestash. The scope of plugins
encompasses many areas, the most important of which is the triptych stor-
age/authentication/authorisation. The storage plugin implements most file
transfer protocols, the authentication plugin connects to an IDP, and the au-
thorisation layer ensure nobody can read/write onto something they aren’t
supposed to.

The plugins installed in your instance are set at compile time (unless you
use the dynamic loader plugin plg_dlopen [A.1]) and are visible from the
/about page. We can add and remove plugins to only use what’s required
by your use case, effectively limiting the capabilities of the software and
reducing the attack surface. Concretely the list of plugins is located under
/server/plugin/index.go with a minimal example looking like tihs:

package plugin

import (
"github.com/mickael-kerjean/filestash/server/common"

// this is how the server starts, by default using HTTP on

// port 8334 but a range of other options are available

// we will discuss some of those options later on in this guide

_ "github.com/mickael-kerjean/filestash/server/plugin/plg_starter_http"

// this is the file transfer protocol our instance can use,
// in this case sftp but a range of options are available
_ "github.com/mickael-kerjean/filestash/server/plugin/plg_backend_sftp"

func init() {
Log.Debug("Plugin loader")
}

3 Hardening of a typical Filestash setup

A typical Filestash implementation has different components:

BROWSER Transport FILESTASH Transport STORAGE
SERVER SERVER

L - A A - A A - J
A c outside Filestash
scope

™~
o~

Filestash is storage agnostic and doesn’t have an opinion on the storage
server you want to use. This part is out of scope for this document so we
will only focus on the hardening of components A, B, C and D.

https://demo.filestash.app/about

3.1 Component A: Browser
By default, Filestash instructs the browser to:

e not download or execute untrusted code and or third-party untrusted
resources

e not make the authentication cookie available to javascript [A.3] to re-
duce the risk of cookie theft if an XSS was discovered

e block the application from loading in an iframe [A.4] to protect your in-
stance against click-jacking attacks. To run from an iframe, you need to
whitelist the domain with the configuration key "features.protection.iframe"

e disable API calls from third-party domains unless an API key is created
and configured to enable access from a specific origin [?7?]

e prevent guessing the effective MIME type of a resource by examining
the content of the response through the MIME sniffing mechanism [A.5]

e stop pages from loading when they detect reflected cross-site scripting
attacks [A.6]

Other features relevant to the browser:

e HTTP GET calls can’t alter the state of Filestash nor the underlying
storage, preventing attackers from carving links that would trick users
onto doing unwanted actions [A.7]

e CSRF protection

3.2 Component B: Transport from browser to Filestash

e STS can be enabled to instruct the browser to disallow HTTP access
altogether [A.8]. To enable this option, "general.force_ssl" should
be set to true

e Filestash can verify the origin of the request it received and deny the
ones that are from unknown origins [A.9]. This option can be enabled
either by setting the "general.host" config key or the APPLICATION_URL
environment variable to your origin

e Filestash by default is deployed as a standalone HTTP server that
listens on port 8334. That behaviour is wired in the plg_starter_http
plugin. For hardening, various other starter plugins are available:

3.3

— plg_starter_httpsfs: enables HT'TPS on the server using your
existing SSL certificates

— plg_starter_web: enables HI'TPS on the server using Letsen-
crypt to generate the SSL certificates

Component C: Filestash server

3.3.1 Application security features

The /about page provides all the information that relates to your build,
including:

1.

the list of plugins installed which can be OSS plugins, enterprise plugins
or custom plugins [A.10]

. the commit hash that allows you to audit the actual code which went

on a build [A.11]

the hash of the binary to enable automated systems to detect when-
ever something has changed like during an upgrade or if an intrusion
happens [A.12]

. the hash of the configuration makes it possible for an automated system

to detect any change [A.13]

Other features which are relevant to the server:

1.

The currently deployed version is visible from the headers in the HTTP
responses [A.14]

The healthcheck endpoint ensures the server is running correctly [A.15]

The presence of an endpoint instructs security researchers on how to
report a security vulnerability [A.16]

Companies that need to maintain 24 /7 uptime for their services can con-
sider using high-availability clusters. Various standard architectures are pos-
sible based on load balancing in pools or at the DNS level, but the details
of such architectures are outside the scope of this hardening guide.

https://demo.filestash.app/about

3.3.2 Authentication and authorisation

Filestash has two types of users:

e Admin user who have the ability to see/change the configuration and
perform other administrative tasks. It’s possible to disable the entire
admin console entirely which is normally available under /admin by
using the plg_admin_nil plugin [A.17]

e Normal user. In a hardened mode, we will only keep a single authen-
tication middleware (typically either the SAML plugin or the openID
plugin) depending of what your IDP supports [A.18]

By default the endpoints enabling users to authenticate are rate limited
[A.19] and it’s possible to provide additional restrictions based on custom
rules using custom plugins.

3.3.3 Audit logging and treat detection

Application logs are written in both a log file located in data/state/log/access.log
and stdout. The structure of the logs is detailed in the documentation and
looks like this:

2022/12/08 09:33:55 SYST INFO Filestash v0.5 starting

2022/12/08 09:33:55 SYST INFO [http] starting ...

2022/12/08 09:33:55 SYST INFO [http] listening on :8334

2022/12/08 12:20:58 HTTP 200 GET .8ms /files/mickael/

2022/12/08 12:20:58 HTTP 200 GET .2ms /custom.css

2022/12/08 12:20:58 HTTP 200 GET .6ms /assets/js/app_be2ceb4dbbd2cfc50e943. js
2022/12/08 12:20:59 HTTP 200 GET .2ms /assets/locales/fr.json

2022/12/08 12:20:59 HTTP 200 GET .6ms /api/config

2022/12/08 12:20:59 HTTP 200 GET 11.2ms /api/session

2022/12/08 12:20:59 HTTP 200 GET .3ms /favicon.ico

2022/12/08 12:20:59 HTTP 302 GET .1ms /manifest.json

2022/12/08 12:20:59 HTTP 500 GET .9ms /api/files/1s?path=),2Fmickael2F
2022/12/08 12:20:59 HTTP 200 GET .3ms /assets/logo/android-chrome-192x192.png

= O & O O

O N O O

If you use a logging service like Splunk, log ingestion can be done directly
through the API of your vendor via a plugin. Auditing is also the responsi-
bility of a plugin. By default plg_audit_log will log the actions made by
users in plain text and provide a graphical way to query that audit data from
the admin interface [A.20].

https://www.filestash.app/2022/09/01/anatomy-of-logs/

There are a couple more standard plugins that help in threat detection
and remediation:

e plg_security_scanner: this plugin contains heuristics to detect the
use of a scanner [A.21]

e plg_security_killswitch: this plugin makes it possible to remotely
stop an instance if we were to discover a vulnerability in the like of
log4j in the future [A.22]

3.3.4 Configuration management

By default, the configuration data is stored on the filesystem. Various other
plugins can override this default:

e plg_config_env: stores the config in the CONFIG_JSON environment
variable as a base64 string

e plg_config_s3: stores and retrieves the config from an s3 bucket

e plg_config vault: stores the config in an hashicorp vault

3.4 Component D: Transport from Filestash to the storage
component

The security of the transport layer from the Filestash server to the storage
component depends heavily on which file transfer protocols you want to use.
As such, the hardening of this component can only be done on a protocol-
per-protocol basis:

e SFTP: the base plg_backend_sftp plugin allows for an empty host key
which does shortcut the host verification based on the public key finger-
print of the SSH server. The hardened version of the SFTP backend
plugin plg_backend_sftp_hardened makes the host key verification
mandatory. plg_backend_sftp_hardened supports 2 fingerprinting
mechanisms based on md5 and sha256, and the authentication can be
done either via a password or using a private key. To provide additional
restrictions, a custom plugin is required

e FTP: the base plg_backend_ftp supports both FTP and FTPS con-
nection in implicit and explicit mode. The hardened configuration can
be done to block FTP altogether and only enabled FTPS in explicit
mode (plg_backend_ftps_explicit) or in implicit mode (plg_backend_ftps_implicit)
depending on what is supported by your server

e plg_backend_webdav_hardened: same as plg_backend_webdav except
it won’t establish a connection over HT'TP but only HTTPS. It’s pos-
sible to create additional customisations to either restrict the domain
and other TLS configurations to provide a hardening based on your
specific use case

e plg_backend_s3_hardened: same as plg_backend_s3 but enforces us-
age of an encryption key in which case Filestash will be relying on the
AWS SDK to encrypt the incoming/outgoing data using AES256 (refer
to SSECustomerKey in the AWS SDK documentation). More varia-
tions of this plugin can be offered to restrict the capabilities of the s3
backend plugin (eg: restrict region, role, ...)

e plg_backend_git_hardened: same as plg_backend_git but removes
support for git over HT'TP and only allows git over ssh using a private
key and a valid host key

In case your company is using their own root certificate and requires
changes in how TLS is handled, we can setup a plugin that implements
those particular rules.

A Appendix
Al

curl -X GET -s "https://demo.filestash.app/about" | \
grep "plg_dlopen"

A.2

curl -X GET -o /dev/null -s -D - "https://demo.filestash.app/" | \
grep "Content-Security-Policy: "

A.3

curl -sD - "https://demo.filestash.app/api/session" \
--header "X-Requested-With: XmlHttpRequest" \
--data '{"type":"webdav","url":"https://webdav.filestash.app/"}' | \
grep -e "Set-Cookie" -e "HttpOnly"

A4

curl -X GET -o /dev/null -s -D - "https://demo.filestash.app/" | \
grep -e "Content-Security-Policy: " -e "frame-src 'self'"

A5

curl -X GET -o /dev/null -s -D - "https://demo.filestash.app/" | \
grep "X-Content-Type-Options: nosniff"

A.6

curl -X GET -o /dev/null -s -D - "https://demo.filestash.app/" | \
grep "X-Xss-Protection: 1;"

A.7

see server/main. g0

A.8

precondition: "general.force_ssl" is set to "true"
curl -o /dev/null -s -D - "http://127.0.0.1:8334/" | \
grep "Strict-Transport-Security: "

https://github.com/mickael-kerjean/filestash/blob/master/server/main.go

A9

precondition: '"general.host" is set to "localhost:8334"

curl -s 'http://127.0.0.1:8334/api/session' \
-H 'Content-Type: application/json' -H 'X-Requested-With: XmlHttpRequest' \
--data-raw '{"type":"blackhole"}' | \
grep '{"status":"error"' # wrong origin yield errors

curl -s 'http://localhost:8334/api/session' \
-H 'Content-Type: application/json' -H 'X-Requested-With: XmlHttpRequest' \
--data-raw '{"type":"blackhole"}' | \
grep '{"status":"ok"' # correct origin does passthrough

A.10

curl -s "https://demo.filestash.app/about" | \
grep -e "STANDARD" -e "EXTENDED" -e "CUSTOM" | \
sed 's|<[*>]*>||g"' | sed 's|~[[:space:11*||g'

A1l

curl -s "https://demo.filestash.app/about" | \
grep "Commit hash" | \
sed 's|<[>]x>] Ig' | sed 's|~\t\s*|l|g'

A.12

curl -s "https://demo.filestash.app/about" | \
grep "Binary hash" | \
sed 's|<[*>]*>| |g' | sed 's|~\t\s*|l|g'

A.13

curl -s "https://demo.filestash.app/about" | \
grep "Config hash" | \
sed 's|<[>]*>| |g' | sed 's|~\t\sx*||g'

A.14

curl -X GET -o /dev/null -s -D - "https://demo.filestash.app/" | \
grep "X-Powered-By: "

A.15

curl -X GET -s "https://demo.filestash.app/healthz" | \
grep '{"status": "pass"}'

A.16

curl -X GET -s "https://demo.filestash.app/.well-known/security.txt"

A.17

precondition: install plg_admin_nil
curl -s -X GET -o /dev/null http://localhost:8334/admin | \
grep "HTTP/1.1 404 Not Found"

A.18

curl -s "https://demo.filestash.app/about" | \
grep -e "STANDARD" -e "EXTENDED" -e "CUSTOM" | \
sed 's|<[*>]*>||g' | sed 's|~[[:space:11*|lg' | \
grep "plg_authenticate_ "

A.19

echo '{"type":"blackhole"}' > /tmp/post.json

ab -n 5000 -c 1 -p /tmp/post.json \
-H "X-Requested-With: XmlHttpRequest" \
"http://localhost:8334/api/session" 2> /dev/null | \
grep -e "Complete requests:" -e "Non-2xx responses:"

10

@ localhost:8

Activity Report

eER cereale Date From: dd/mm/yyyy, —:-
Date To: dd/mm/yyyy, —:-
User:
Target: 127.0.01
Action: list
Path:
Backend: sftp
Date Time Action Path Backend User Targ
2023/01/11 16:52:49 list /home/mickael/Documents/projects/ sftp mickael 127.
2023/01/11 16:52:48 list /home/mickael/Documents/ sftp mickael 127.
2023/01/11 16:52:44 list /home/mickael/ sftp mickael 127.
2023/01/11 16:52:13 list /home/mickael/ sftp mickael 127.

A.21

curl -X GET -s "https://demo.filestash.app/about" | \
grep -e "STANDARD" -e "EXTENDED" -e "CUSTOM" | \
sed 's|<[*>]*>||g"' | sed 's|~[[:space:11*|lg' | \
grep "plg_security_scanner"

A.22

curl -X GET -s "https://demo.filestash.app/about" | \
grep -e "STANDARD" -e "EXTENDED" -e "CUSTOM" | \
sed 's|<[*>]*>||g' | sed 's|~[[:space:11*|lg"' | \
grep "plg_security_killswitch"

11

	Introduction
	Architectural Overview
	Hardening of a typical Filestash setup
	Appendix

